Molecular docking of glucosamine-6-phosphate synthase in Rhizopus oryzae
نویسندگان
چکیده
Recent expansion of immunocompromised population has led to significant rise in zygomycosis caused by filamentous fungus Rhizopus oryzae. Due to emergence of fungal resistance and side-effects of antifungal drugs, there is increased demand for novel drug targets. The current study elucidates molecular interactions of peptide drugs with G-6-P synthase (catalyzing the rate-limiting step of fungal cell wall biosynthetic pathway) of R.oryzae by molecular docking studies. The PDB structures of enzyme in R.oryzae are not known which were predicted using I-TASSER server and validated with PROCHECK. Peptide inhibitors, FMDP and ADGP previously used against enzyme of E.coli (PDBid: 1XFF), were used for docking studies of enzyme in R.oryzae by SchrödingerMaestro v9.1. To investigate binding between enzyme and inhibitors, Glide and Induced Fit docking were performed. IFD results of 1XFF with FMDP yielded C1, R73, W74, T76, G99 and D123 as the binding sites. C379 and Q427 appear to be vital for binding of R.oryzae enzymes to inhibitors. The comparison results of IFD scores of enzyme in R.oryzae and E.coli (PDBid: 2BPL) yield appreciable score, hinting at the probable effectiveness of inhibitors FMDP and ADGP against R.oryzae, with ADGP showing an improved enzyme affinity. Moreover, the two copies of gene G-6-P synthase due to extensive fungal gene duplication, in R. oryzae eliminating the problem of drug ineffectiveness could act as a potential antifungal drug target in R. oryzae with the application of peptide ligands.
منابع مشابه
Functional co-evolutionary study of glucosamine-6-phosphate synthase in mycoses causing fungi
Invasive fungal opportunistic infections or mycoses have been on the rise with increase in the number of immuno-compromised patients accounting for associated high morbidity and mortality rates. The antifungal drugs are not completely effective due to increased resistance and varied susceptibility of fungi. Hence, the functional diversification study of novel targets has to be carried out. The ...
متن کاملTPS1 drug design for rice blast disease in magnaporthe oryzae
Magnaporthe oryzae (M. oryzae) is a fungal pathogen and the causal agent of rice blast disease. Previous lipidomics analysis of M. oryzae demonstrated that trehalose, a carbohydrate common to various fungi and algae, is thought to be involved in the possible conversion of glycogen into triacylglycerides for energy, an important step in the pathogenesis of M. oryzae. A key enzyme responsible for...
متن کاملAngular Phenozaxine Ethers as Potent Multi-microbial Targets Inhibitors: Design, Synthesis, and Molecular Docking Studies
The reaction of diaza-5H-benzo[a]phenoxazin-5-one and 5H-benzo[a]phenoxazin-5-one with various phenols catalyzed by Pd/t-BuXPhos/K3PO4 system gave previously unknown ether derivatives (7a-f and 8a-f) in good yields. UV-visible, FTIR, and 1H NMR data were used to confirm structures of the synthesized compounds. The parent compounds and the derivatives were screened in-silico for their drug-liken...
متن کاملSolution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase.
CBMs (carbohydrate-binding modules) function independently to assist carbohydrate-active enzymes. Family 21 CBMs contain approx. 100 amino acid residues, and some members have starchbinding functions or glycogen-binding activities. We report here the first structure of a family 21 CBM from the SBD (starch-binding domain) of Rhizopus oryzae glucoamylase (RoCBM21) determined by NMR spectroscopy. ...
متن کاملGlucosamine-6-phosphate synthase--the multi-facets enzyme.
L-Glutamine: D-fructose-6-phosphate amidotransferase, known under trivial name of glucosamine-6-phosphate synthase, as the only member of the amidotransferase subfamily of enzymes, does not display any ammonia-dependent activity. This enzyme, catalysing the first committed step in a pathway leading to the eventual formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), is an impo...
متن کامل